Archive | July 2016

Just where are we, anyway?

If you’ve been clicking through our new “extended survey” season, you might have noticed some new critters — particularly lots of cattle, sheep, goats, even donkeys! This is because the extended survey reaches much farther north, west, south, and east than the long-term camera study area. You can see all of Tom’s and Michael’s cameras on the map below in the black and gray circles. Two sites are at the edge of the park, where we might expect to see  the occasional pastoralist passing by  (even if they’re not supposed to) — and one site is *all* the way down deep in the Ngorongoro Conservation Area, where pastoralists live permanently.  If you see any livestock in the images, go ahead and mark them as “cattle” — we’ll be able to figure it out from there!


A Snapshot Serengeti Special Edition!

Join us for a special edition of Snapshot Serengeti! Hot on the heels of Season 9, we’re launching the Snapshot Serengeti Extended Survey – a season loaded with photos from new locations in the Serengeti Ecosystem.

The original Snapshot Serengeti team has joined up with Prof. Michael Anderson (from Wake Forest University), Prof. Rico Holdo (from University of Georgia) and Dr. Tom Morrison (from University of Glasgow, UK) to understand how wildebeest, zebra and other herbivores impact vegetation dynamics in Serengeti.


Michael measuring soil moisture at a vegetation plot

We are particularly interested in understanding how the many many herbivores in Serengeti (both in terms of total number and the diversity of species) impact the growth, survival and germination of savanna trees. But why study trees? Savannas – like the one found throughout the Serengeti – present a bit of a paradox for ecologists. Most savannas receive sufficient rainfall throughout the year that they “should” become forests. We know that things like fire and herbivory help them maintain a mixture of continuous grasslands interspersed with smaller number of trees. Indeed, Serengeti receives enough rainfall (450mm per year at the driest part of the ecosystem to over 1000mm in the wettest) that it should be chocked full of trees, but yet, for most of the ecosystem, it remains a savanna (and quite a beautiful one).

We’ve designed an experiment understand the fate (the life and death and growth) of small trees at the seedling and sapling stage. During the wet season, we germinated a large number of seedlings in a nursery at the research center in Serengeti (see photo). We selected the two most dominant trees in the ecosystem: Acacia tortilis (commonly known as the umbrella acacia) and Acacia robusta (the stink bark acacia).


Seedlings in the nursery

After growing 760 seedlings for about 6-8 weeks in the nursery, we transplanted them in the field at 19 different plots across the ecosystem, spanning the large gradient in rainfall mentioned above. Once in the ground, we subject them to various treatments (or mistreatments, if you like) such as fire, herbivory and watering. By using a combination of these different treatments, we hope to understand how important they are in determining the survival of trees at a small stage, which will ultimately inform why they survival into adulthood.

Our camera traps are set up at all of these different plots so we can track how herbivores use these areas differently and the effect that has on the vegetation, and we need your help to classify the photos! So head on over to Snapshot Serengeti  and dive in! You never know what you might find!