Archive | Animals RSS for this section

The African Buffalo, Success in a Crowd

African Buffalo Herd

 

 

Lately we seem to have had some great buffalo images. These big imposing beasts aren’t exactly pretty but they have an appeal of their own with their imposing bulk.

There are 4 recognised subspecies of the African buffalo (Syncerus caffer), three savannah buffalo and one forest buffalo. Here in the Serengeti we find Cape buffalo (S c caffer) the biggest of the three savannah species also known as southern savanna buffalo. It weighs in at a whopping 500- 900 kg for males or 350-620kg for females. The two other savannah species are West African savanna buffalo (S. c. brachyceros) and Central African savanna buffalo (S. c. aequinoctialis) both slightly smaller than their Cape buffalo cousins.

The forest buffalo (S. c. nanus) appears quite different being redder in colour and quite a bit smaller weighing around 265-320kg but it is thought that this is in fact the ancestral African buffalo from which the others evolved. According to the IUCN Red-List although the three savannah species appear similar they are at least as different from one another as they are from the more distinct forest buffalo. Defining subspecies is always tricky and apparently there is hybridisation where these different subspecies meet, including between savannah and forest subspecies. I witnessed this when working in the Central African Republic where you could see smaller red ‘forest’ type buffalo intermingled with bigger looking dark ‘savannah’ type.

So what makes African buffalo so special? You would imagine that such a large animal would not seek safety in numbers but this animal is highly gregarious. Herds can reach thousands strong but these tend to be temporary and the usual number is dozens to hundreds formed of clans of related females and their offspring and an assortment of males. The rest of the males form small bachelor herds of 5-10 animals or live alone.

Living in these large herds gives buffalo a certain security and they are highly protective. They are known to chase predators as a herd in order to ‘rescue’ a targeted individual. They don’t hesitate to run at lions if they are threatened. This is to be expected when there are young calves about but buffalo herds are known to extend this behaviour towards injured, sick and even blind herd members. It is so effective that it is actually males not living in large groups, particularly the loners that are most often preyed upon by their arch enemy, the lion. When buffalos are on the move dominant females lead the way with mothers and calves in the centre followed by any infirm individuals and older cows with males forming a protective ring around the entire herd.

Formidable indeed but of course the very thing that allows them to be so aggressive, their size, is also the thing that attracts lion the only true threat other than man to an adult African buffalo.

As a species the African buffalo is listed as ‘least concern’ on the IUNC Red-List due to its widespread distribution. That doesn’t mean that there are not conservation issues. Buffalo are often targeted by poachers for the obvious reason that they provide a rich reward in meat, the usual land reduction is a factor and in areas outside game reserves they are often killed as they compete with domestic cattle for food.

Historically buffalo numbers plummeted in the 1890’s due to the rinderpest epidemic that saw the disease spread from domestic cattle to wild ungulates. The disease continues to have small outbreaks. More recently bovine tuberculoses, again spread from domestic cattle to buffalos, in the Kruger National Park has also caused mortality as well as triggering a cascade of health issues in other animals, in particular, lions who eat infected buffalo. A whole industry has grown up with the sole purpose of breeding TB free African buffalo in South Africa. On the whole though African buffalo are well represented with strong populations in protected areas and as long as these remain their status looks to be stable.

The male and female have large horns that are fused at the base forming a boss across their heads, in the male though this becomes thickened and sometimes massive and fighting males will crash bosses together if things become serious and posturing doesn’t work. The impact is so intense that they risk killing themselves or their rivals.

 

Big male Cape buffalo

 

 

Next time you find a buffalo image, see if you can work out if it is male or female and take sometime to reflect on these formidable beasts.

Advertisements

New and Improved Image Batch

This slideshow requires JavaScript.

 

Last week the amazing community of classifiers on Snapshot Serengeti managed to complete the current batch of images. That doesn’t mean that this season is done with. It used to be that the whole season would be uploaded all at once on to the Zooniverse platform but these days with ever increasing image sizes and plenty more projects taking part space has become a bit of an issue. So now we upload in batches.

Normally we would have the new one ready to go straight away but as long time followers of Snapshot Serengeti may have noticed we have been having some image quality problems since swapping over to a new Panoptes platform.

We have finally found someone who is able to sort out this problem for us and he is working on it as we speak but the Snapshot Safari team decided that delaying the new batch of images for a short while to bring you better quality images to classify was worth the wait.

So we will be back shortly, new and improved and hope that it will improve your experience on the site.

In the meantime here is a sequence of cute elephant interaction captured in the last batch. Enjoy.

 

 

The Race

 

 

Recently the science team behind Snapshot Serengeti, lead by Dr Michael Anderson, were wandering around the plains going about their latest research (more about that soon) when they got to witness a sight of high intensity, namely a bit of large predator interaction.

The drama occurred around an area known as the Maasi Kopjes. The team at this stage were in their vehicle, as a lioness was nearby, when they noticed a lone cheetah wandering into the lioness’s territory.

 

The cheetah is obviously anxious as can be seen in this image.

Nervously attentive cheetah

 

The lioness quickly picks up the intruders scent and as Michael tells me used their vehicle as cover to stalk closer to the cheetah.

Lioness watching cheetah

 

Initially the cheetah was unaware of its impending doom but the lioness’s indignation at the intrusion possibly affected her stealth and the cheetah finally noticed her approach.

The race was on. The big cat race.

From these shots you can see the sudden acceleration of the cheetah and yes, it got away, living to see another day and the lioness happily securing her domain on her territory.

Perhaps you will be lucky enough to see both these animals on our camera-traps!

Thanks to Dr Michael Anderson for sharing his Photo’s with us.

A Touch Of Colour

After my latest field trip to Namibia I was fortunate enough to spend a few weeks visiting some old haunts in South Africa. Even though I had very little time and no real scientific purpose other than curiosity I could not help but put out my camera traps whilst I was there. It was after all a nature reserve and surprises can happen.

One of the camera traps was located on a well used animal track that lead from the bush down to the river. The rains had not thus far been kind in that part of Africa and the bush was rather dry with little standing water so I was confident the track would offer some interesting images. As expected I had lots of images of vervet monkey, warthog, impala, nyala and waterbuck. Imagine my surprise then when I scrolled through 20 or so images of a small herd of waterbuck does with young to find this fluffy looking white thing that looked more like a sheep!

 

Leucistic Waterbuck

 

 

In fact it was a leucisitic waterbuck. Not to be confused with albinism, which is a condition caused by absence of melanin leading to pale skin, hair, feathers and eyes, leucism is defined as a partial loss of pigmentation that leads to an animal appearing pale or patchy but often with patterns still showing. The eyes in animals with leucism are normally coloured never the red that can occur in albinism. So albinism is a lack of melanin and leucism is a partial lack of melanin.

You can see this little waterbuck still has the distinctive bulls eye target ring around its rump that distinguish the common water buck from the Defassa waterbuck we are used to in the Serengeti proving it is leucistic not albino.

Regardless of which of the two conditions it has the young animal will have a tough time. The pale colour makes it stand out as a target to predators and it is thought that survival rates for leucistic animals are low. That’s not to say it won’t make it to adult hood, in fact the white lions of the Timbavati are a well followed case of leucism in a population that every now and then throws up a white cub or two, they are so well watched that it is known that some do survive into adult hood. From those few individuals stem most of the white lions that can be seen in captivity in zoos all be it showing all kinds of horrible traits of constant inbreeding.

After finding these images I was lucky enough to spot the herd with my own eyes. I watched the little leucistic waterbuck playing and frolicking with a like aged normal waterbuck and for all the world you wouldn’t know what all the fuss was about. The two were identical in every way except the pure chance of a mutated gene governing colour. Good luck to the pair of them.

Best of Friends

wildebeest and zebra

 

Symbiotic relationships are common in the Serengeti. They fall into two main types, mutualism, whereby both partners benefit from one another and commensalism, whereby one partner benefits from the actions of the other but the other partner is largely unaffected or unharmed. I wrote recently of oxpeckers and large herbivores, large herbivores provide food in the form of ticks for the oxpeckers and oxpeckers provide a cleaning service for the large herbivores, a good example of mutualism. Birds such as cattle egrets that follow buffalo around to catch the invertebrates the buffalo disturb as they graze is an example of commensalism. Of course it is not just animals that have symbiotic relationships; my blog last week on termites and mushrooms was another example of mutualism.

So what about zebras and wildebeests? We see them all the time on Snapshot Serengeti in mixed herds, grazing peaceably with one another. Is this just coincidence or is this a form of symbiosis?

It is actually hard to say and of course that is why labelling things, especially behaviour is often tricky.

Zebra and wildebeest are both grazers meaning they mostly eat grasses but that doesn’t mean they share the same diet. They preferentially eat different parts of the plants that they consume. Zebras are quite content chewing longer tougher grasses where as wildebeest prefer shorter, more tender shoots. This partition of resources means they can quite happily graze side by side with out exerting pressure on each other.

Another good reason to team up is the extra safety that numbers provide. Not only do more ears and eyes provide better early warning systems but the odds of the individual being targeted by a predator are reduced when there are greater numbers to choose from. Apparently zebra have better eyesight but wildebeest have better hearing so the two complement each other.

There could be another reason. Our very own Meredith Palmer just published a paper about interspecies reaction to each other’s alarm calls, you can read it here: https://www.sciencedirect.com/science/article/pii/S0003347217304207

She found that zebra, wildebeest and impala recognise each other’s alarm calls but that they did not always respond in the same manner. When zebra sounded the alarm all three herbivores reacted strongly but when impala gave the alarm zebra where likely to ignore it, or assess the relative danger themselves. It seems that this varied response is down to predator size. Impala are prey to a wide range of smaller predators that would not be able to handle a mammal the size of a zebra, so when impala give the call it doesn’t always signal danger for the zebra. However when a zebra, the largest of the three herbivores sounds the alarm, whatever it has seen will probably be able to take down the wildebeest or the impala too so it’s prudent that all three scarper.

It is an interesting reaction and maybe wildebeest hang out with zebra because they are more trustworthy alarmists. I am not sure that the companionship of zebra and wildebeest can be classed as symbiotic I think it is more of an interaction due to a shared habitat but it seems that on some level they can benefit each other.

The Giraffe and the Oxpecker

IMAG0415

 

Those of you who follow our Facebook page will have seen recently that Meredith Palmer, one of Snapshot Serengeti’s scientists and PhD candidate with Minnesota University just published a paper in African Journal of Ecology with the catchy title;

Giraffe Bed and Breakfast: Camera traps reveal Tanzanian yellow-billed oxpeckers roosting on their large mammalian hosts.

The paper highlights one of the more unusual behaviour traits documented by our cameras and discovered by our classifiers of yellow-billed oxpeckers (Buphagus africanus) roosting on giraffe at night time.

Those of you that have been with us a while may have had the pleasure of finding one of these night time images of giraffe with oxpeckers tucked up safe and snug between their back legs. In fact I wrote a blog about this back in 2014.

https://blog.snapshotserengeti.org/2014/01/17/the-curious-case-of-the-giraffe-and-the-oxpecker/

Two species of oxpecker are found in the Serengeti, the red-billed and the yellow-billed oxpeckers. Whilst the red-billed will feed from a wide range of hosts from impala and wart hog to hippos the yellow-billed oxpecker is more discerning and prefers large hosts such as buffalo, eland and giraffe. The problem with this choice is that these animals are far roaming and if the birds were to find trees to roost in at night, and these can be sparse in the Serengeti, the yellow-billed oxpecker could struggle to locate its host the following morning. It seems they have overcome the problem by staying over on the hosts. What’s more is these clever birds have opted for the premium rate rooms where they are not disturbed during the night for, as is well documented, giraffe almost never lay or sit down at night time preferring to stay upright.

So although during the day yellow-billed oxpeckers are found on several large mammal hosts most of the night time images are of giraffe roosts. It seems they also have a preference for the groin area of the giraffe. It is not hard to imagine that this would be the warmest safest spot on the giraffe, the cavity created where the two hind legs meet is spacious enough to accommodate a small flock of birds and of course is also very attractive to ticks so if they fancied a mid-night snack…..

It is these unexpected discoveries that make the project so exciting and worth all our effort in taking part so next time you are racing through the classifications take a little time to have a closer look at the images, you never know what is waiting to be discovered.

 

If you want to read more about Meredith’s paper you can read the following:

https://news.nationalgeographic.com/2018/02/animals-serengeti-tanzania-birds/

 

 

 

 

Observations on Observations

White-browed sparrow weaver nests

 

Camera-trapping has vastly opened up the possibilities of studying animals in the field in a relatively unobtrusive manner. Leaving a bunch of camera-traps clicking away 24/7 over a long period is generally cheaper than employing researchers to stay in the field providing them with accommodation, food and vehicles.
However it has its drawbacks. Good field skills are only learned over time spent in the field and although field researchers cannot operate 24/7 like the camera-traps they are less impartial observers noticing all kinds of fine details surrounding that which they study.
It is these observations that stimulate and inform new scientific questions and drives the understanding of the world around us. I am not suggesting that the results of camera-trap studies can’t also do this but since the days of the first naturalists it is being in the field that nurtures the very interest in studying wildlife in the first place.
The researcher who knows their study area well will be at an advantage to one who has planned from afar after using GIS. I know because I have been both. My first camera-trap project was on a reserve where I had lived for three years and that helped me know intuitively where I should place my camera-traps. On the other hand my latest project involved a very fine time window and I had to set up camera-traps on an unknown farm within two days of arriving. By the end of the 8 week period I was just starting to get a better feel for the place and could have kicked myself for not placing my cameras in the optimum places. When I went back to collect the cameras I found myself wading thigh high through a carpet of small yellow daisy-like flowers that left me coated waist down in a yellow stain. Had I have known the farm better realised this plant grew only in a few areas and could have avoided it entirely and saved myself the turmeric skin wash and a lot of miss-triggers.
My latest trip to Africa reminded me of why living in the field is so rewarding. Whilst the camera-traps are diligently collecting your data it gives you the chance to observe without frantically thinking of your research question, you can take time to take inspiration from the broader environment.
Near my tent was an old dead knob thorn tree that had five white-browed sparrow-weaver nests hanging like straw balls from it. Each night at dusk a pair of sparrow weavers would fly into the tree, call loudly as if claiming the spot and the female would dive into her preferred nest. The male would remain up high above waiting. Just as the last light was fading 3 or 4 small dark shapes would arrive and the sparrow weaver would chase after them squawking disapproval. Having seen them off he would come back and settle himself into the nest of his choice retiring for the night. Watching closely revealed, a few minutes later, the return of the invaders; two pairs of black-faced waxbills. They alighted at the top of the tree and cautiously made their way down towards the remaining nests finally one by one slipping quietly into the unused nests one couple per nest.
The thing about this little drama was that it was played out every night for over two months. None of the birds seemed to alter their routine and none where actively breeding at the time, they just had their bed time ritual. This was the kind of observation that the camera-traps will never quite capture as well as a human. In just the same way, although Snapshot Serengeti would not exist without the cameras it would be nothing without the human, citizen scientists behind the scenes sorting out the images. Even with computer recognition programs on the horizon I believe it would be foolish not to still use humans who’s innate sense of life will always pick up on something that is slightly odd, unusual or different about an image.

The Sun Spider

315px-Solifugae_Solpugidae_-_Jerrymunglum_female_Dorsal_aspect

Solifuge credit: Jon Richfield Wikimedia CC BY-SA 3.0

 

When living in the bush in Africa your life becomes attuned to the rhythms of nature. Up with the sunrise, the spurfowl, guinea fowl and francolins won’t have it any other way, their raucous calls start well before the sun is actually visible. Physical work can be done until about mid day and then if possible its best to seek shelter till around 4pm when the sun is at least not high enough to cook you yet still pretty hot. By 8pm its dark so there is nothing else to do but sit back around a fire and let the night envelope you.
I am living so basically at the moment, my clothes are starting to look shabby after two weeks of hand washing in minimal water. I am however improving my skills daily at cooking on an open fire. It is amazing what you can do with a skillet, a pot and bits of old rebar and wire. I may have invented a new dish last night, Christmas Eve, when I conjured up a gemsbok stir fry.
The wood here gives new meaning to the term hard wood. Luckily for me there is a ready supply of wood due to the need for bush clearing on this cattle farm. Just a few pieces are enough to get really good coals glowing to cook over. They use a deep three legged cast iron pot in Africa for cooking stews, known as a potjie here in Southern Africa. I might even try my hand at bread next.
So last night after a good feed, Trev and I sat contemplating the embers whilst watching nightjars and bats hawking what looked like flying termites. It has rained recently triggering the eruption, earlier we watched guinea-fowl, hornbills, starlings, drongos and a whole host of other small birds running back and forth slurping them up straight from the holes before they could even get airborne. There is a constant suzzz of insect noise interrupted by the screech of barn owls and the odd jackal.

Then there is a deathly screech to rival that of the barn owl, what is it you ask? well it’s me. Something has just ran up my leg across my back up on to my head and then dropped down again to the ground between my feet. I am not usually given to screaming like a girl and creepy crawlies don’t usually bother me, but there is nothing quite like the dark to bring out the pathetic in us. So a quick scrabble for flash lights ensues and the culprit is spotted.
It’s a solifuge, otherwise known as a sun spider. Not actually a spider, though belonging to the same class, arachnida, they form an order by themselves, solifugae. They differ from spiders in not having silk glands and therefore do not spin webs. They appear to possess 10 legs but in fact the front most pair are actually pedipalps that act as sensors and aid in feeding. They are voracious predators and will eat anything they can overpower such as spiders, scorpions, insects and invertebrates.
Totally harmless to humans they do however install a lot of fear. This is partly due to two behavioural traits. If disturbed in the day the solifuge will head for the nearest dark place, often the very shadow cast by the human that caused the disturbance in the first place, giving the false impression that the solifuge is running at you in attack mode. Similarly at night they will follow a light source, again, often that of a human with a flash light.
The second trait is that they move like greased lightning. They are constantly zipping from here to there in a frantic search for prey to keep their high metabolism ticking over. They have also been known to take human hair to make their nests.
You are not likely to pick one of these up on Snapshot Serengeti’s camera-traps but if you ever get the chance to observe one of these arachnids going about its daily business it is really very fascinating, if of course you can get over your human fear.

Back in Africa

The Waterberg Plateau

You know you are in Africa when you wake up at the airport lodge on the edge of a capital city and stepping out from your room you come face to face with a bird that towers above you. Ostrich aside the dry heat of the Kalahari leaves you in no doubt you are in Africa.

I am in Namibia where I will be for the next two months. I am working on a cattle farm in the Waterberg plateau that is part of a greater nature conservancy. I have already got my camera-traps out, hopefully snapping away as I write. The idea is to look at how camera-trap spacing affects the chances of recording smaller mammals. There are plenty of those here, bat-eared fox, jackal, caracal, mongoose, pangolin, hare and aardwolf to name but a few.

The great thing about using camera-traps is that now they are up I have some weeks to wait before moving them so I have plenty of time to immerse myself in the African bush. I have already clocked up over 100 bird species in less than a week, its taking a while to get my ear back in gear, I keep hearing tantalisingly familiar calls but can’t quite remember who they belong to. It is the start of the rainy season and subsequently the breeding season so there is an awful lot of activity. The binoculars are back living on my shoulder and in use every few minutes.

The bush here consists of a lot of small bushes and trees interspersed with small open grass patches. Plenty of sickle bush, raisin bush and buffalo thorn. I forgot how hard it is to walk through, constantly getting hooked up on vicious thorns that grab at you as you pass.

The best bit of the trip is living in a tent, ok afternoon naps are impossible in the heat but you get to wake up early to the birds calling. The francolins and spurfowl are calling before the sun even rises. There are white browed sparrow weavers building nests in a tree near the tent that have the loveliest melodies. Then there is the night shift. It is pretty hard to fall asleep sometimes when the noises just make you want to get up and investigate. So far I have come face to face with a honey badger sniffing around our fire and several genets. The jackal’s shrill call is omnipresent but the one I listen out for is the rasping call of the leopard. I haven’t been disappointed, every other night that sound rumbles through me.

My internet connection is not so great but I should still be making regular posts for Snapshot Serengeti and there are still plenty of images to classify. We would like to run season 11 in the New Year if we can get season 10 completed. I may even have the odd camera-trap image from my Namibia project to share. Watch this space.

Identifying Small Carnivores

 

One of the groups of animals that seem to prove quite tricky to tell apart on Snapshot Serengeti are the small carnivores that belong to the canid and hyenid family. That is to say the jackals, black-backed and side-striped, the bat-eared fox and the aardwolf.

There are good reasons for this. Firstly they are predominantly nocturnal, though the jackals can often be seen in day light hours. Secondly they are small and constantly on the watch for larger predators. Studies have even shown that similar species such as coyotes are rather camera-trap shy so it could be possible these African cousins are avoiding the cameras. I noticed when looking for bat-eared fox images particularly that there are very few close up images, the foxes always seem to be in the distance. Something to maybe study?

So back to classifying, what’s the best way to tell these species apart?

Let’s start with the jackals, the most dog–like of the Serengeti’s small carnivores.

The first thing to note is there are actually three possible jackals to be found in the Serengeti but I will stick here to the side-striped and black-backed as the most common, the golden jackal doesn’t come up so often on our cameras but looks broadly the same as the other two with slightly more uniform colouring.

 

Jackals have dog like proportions with the shoulders and hind end approximately the same height. They have very pointed muzzles and large pointed ears. The black-backed can be distinguished by its black saddle running from the back of the neck through the shoulders up to a point at the top of the tail. It is flecked with white hairs giving a grizzled appearance. The rest of the body is a sandy colour. The side-striped is more uniform grey brown with a flash down its side both light and dark but lacking the saddle. The tip of the tail is often white. Their ears are smaller than black-backed jackal.

 

The bat-eared fox meanwhile is a strange looking creature. All three of these carnivores have large ears to help them locate prey but the bat-eared fox wins the prize. Its ears dwarf its little face which is very small. They need these huge ears to locate their insect prey. Over all bat-eared foxes are the smallest of the three and have a rather plain silver/grey coat with dark legs, ears and upper parts of its thick bushy tail. If you are not sure look at the over all posture. The jackals hold their head high on a strong neck but the little bat-eared fox often has his head down and appears to have no neck.

Aardwolf, although not canids, are included here because in size and shape they are very similar to the other two. Fortunately these guys have distinctive striped coats which help separate them from all but the much larger and very rare (in Snapshot Serengeti) striped hyena. The aardwolf seems to have a rather thick long neck and a much more hyena shaped heavy muzzle.

So the tip here is to look closely at body form as well as colour, hopefully seeing these images of the three together will be helpful next time you get stuck classifying.