Meet the People #2

kopelion_maasai_fieldwork

Ingela showing camera-trap images to local Maasai

Photo: KopeLion

In my last blog I mentioned Ingela Jansson and the KopeLion project and promised to tell you more.

Ingela spent three years working for the Serengeti Lion project as a research assistant monitoring lions in the Serengeti National Park as well as the Ngorongoro Crater. Although working in the park was an amazing experience it was the work she did in the crater area that was to prove a more urgent calling. The very real conflict she saw between humans and lions persuaded her that if someone didn’t do something the Ngorongoro lions were headed towards extinction. And so KopeLion project was born in 2011.

The Ngorongoro conservation area was gazetted in 1959 and designated a multi use landscape. The pastoralist population were permitted to continue living there alongside the wildlife. Since this time the population has risen 10 fold and the once harmonious coexistence with lions has collapsed. Lions have disappeared from much of the area and the connection to the Serengeti lions is all but extinguished.

Enter KopeLion. The project aims to foster human – lion coexistence through community engagement, science and mentorship. One of the most successful outcomes so far is the recruitment of former lion hunters as lion protectors, we heard Roimen’s story last week.

But just how do you ‘engage with the community’ to try and change their minds about living with a dangerous predator. Well KopeLion do this in many ways. Firstly most of the employees are local which means they already have the community’s ear. To the Maasai their live stock are sacred so KopeLion spend a lot of time trying to reduce lion conflicts. They follow the model developed by Lion Guardians Ltd ( http://lionguardians.org )by helping local herders to build sturdy bomas,  searching for missing livestock, treating injured livestock and warning herders when lion are nearby. The lion guardians or Ilchokutis are assigned an area of between 60 and 200km2 where they monitor lions or signs of lions scientifically. They also try to prevent young warriors or Morani from carrying out lion hunts. Part of their role is as mentors to the younger generation.

The Maasai still hold strong traditional beliefs and have strong community ties, recognising and embracing this is one of the reasons for KopeLion’s success so far on its mission to help humans and lions live in peace. The strong local ties mean KopeLion have won trust amongst the local herders and in 2016 they were able to stop more than 20 lion hunts from going ahead and have seen the evidence that their efforts are working in the fact that two of the monitored lion prides now show complete survival.

Ingela and her team at KopeLion are doing such valuable work that I urge you to head over to their incredibly informative website to read more about it.

http://kopelion.org/

 

kopelion_imobilization_lion_puyol_naibardad_-nca-2

The KopeLion team immobilizing a lion

 

Photo: KopeLion

Meet the People

 

Over the next few months I would like to bring you a few blogs about the many people that work to make Snapshot Serengeti possible. Without them there would be no data for us to pour over but what exactly do they do and who are they?

Dr Michael Anderson is currently in the Serengeti collecting data and checking up on how the various projects that make up Snapshot Serengeti are getting along. As part of the projects commitment to engaging with the local community Michael has begun a National Geographic funded intern program. Its aim is to give young locals valuable training and research experience in the fields of ecology and conservation.

The first student to be taken up on the program is Roimen Lelya Olekisay. He is a Maasai from the Ngorongoro Conservation Area. His story highlights why the intern program is a vital part of both the scientific and conservation work we do. Many local people see wild animals as a threat to their own domestic stock as well as themselves and retaliatory killings are common. Living alongside wildlife is not easy. Without the good will of the local people it is very hard to change their attitudes to the work we do and the animals themselves.

Roimen grew up on the Western slope of the Ngorongoro crater, his family, like many Maasai are herders. As a young boy he roamed all over the Ngorongoro protected area (NPA) with the family livestock. The Maasai are permitted to live in the NPA where they can graze livestock but are not allowed to cultivate the land. Roimen spent two years away at secondary school before returning to the family to continue herding. This is a familiar story for many Maasai. The importance of livestock is paramount and many boys do not complete schooling.

As a young warrior, like many his age, Roimen speared and killed at least three lion. Tradition dictates that young Maasai warriors must kill a lion to become a man. He would have maybe carried on killing lions whenever he perceived a threat to his family’s livestock but he met up with Ingela Jannsen’s group Kope Lion Project in 2013 who work in the area trying to mitigate lion/human conflict. He helped fit a radio collar to a lion and this interaction with the king of beasts up close transformed him from a lion hunter to a lion protector. He became one of Ingela’s lion scouts (more about Ingela and the Kope Lion Project in next week’s blog) recording predator-livestock attacks in the conservation area and working to prevent lion conflicts and hunts. His enormous enthusiasm for lions and their research makes him a perfect candidate to further his scientific skills. This is someone with a natural ease and interest in the wildlife around him and its preservation.

In his new role as the first intern for the National Geographic-Serengeti National park program Roimen will be tracking lions and setting up a camera-trap network that hopes to dissuade human-lion conflicts and generally learning all the scientific skills associated with this work. He has just started and will be with us for six months, hopefully we can catch up with his progress in a few months.

 

Photo’s curtsey of Ingela Jannsen and KopeLion project

 

 

Black and White

 

M2E6L35-56R350B300

Grants Gazell

This past week I have been trudging up and down boggy slopes with armfuls of tree protection tubes, posts, tools and finally trees as part of a reforestation project in the Lake District National park, UK. With storm Doris fast approaching it has been a miserable week and my mind has often wandered over to snapshot Serengeti for some light relief.

 

The job I am doing, trying to help mitigate the over grazing of sheep and deer made me think of Michael Andersons work that has provided us with the images for season 9.5. He has written here about the project to study how herbivores affect vegetation patterns and you will have seen the enclosures around his experimental plots.

 

Some people have found that the images from this season are not quite as good as in previous seasons, they seem to be a bit fuzzy in places and there are a few less lions. On reflection though it does seem to be producing a lot of my favourite images, those taken during dusk and dawn when the camera is not quite sure if it is day or night and ends up taking a black and white daytime shot. These pictures can be quite exquisite and have the feel of being completely composed by a top photographer rather than just a random event.

 

Here are some of my favourites.

57875d5c9eb3950040059329_0

Zebra/Wildebeest

57875edd9eb395004006af67_0

Impala

578757279eb3950040010cdd_0

Wildebeest

 

 

It is a good reminder to us all that although we are all waiting to discover that one truly great animal capture and it is gratifying to classify the more unusual beasts the aim of the whole project is science. Back in the old days of Serengetilive the classifying was done one camera roll at a time. Sometimes I would sit and classify 2000 capture events of….. grass. Seriously, you would be luck to maybe get a passing bird but it had to be gone through just in case the last couple of shots were of lion. At least with Snapshot Serengeti the pictures are randomised so you get shots from a mixture of cameras rather than being stuck on a tedious one.

 

Snapshot Rhinos

This slideshow requires JavaScript.

One of the animals that continue to be a rarity on snapshot Serengeti is the rhino. We have had a handful of capture events over the years.

There are two species of rhino found in Africa; the white or square lipped and the black or hook lipped. The Serengeti is home to the latter. It is a large bulky mammal and as such many a hopeful #Rhino has turned out to be a blurry image of an elephant or buffalo.  Things can get confusing with some of the images but isn’t that half the challenge trying to guess those indescribable blobs? Surely it wouldn’t be the same if everything was easy to id?

Anyway back to Serengeti rhinos.

Just 50 years ago between 500 and 700 Eastern Black Rhino (Diceros bicornis michaeli) roamed the Serengeti-Mara ecosystem but during the seventies the population was decimated by poaching to around 10 or so individuals.

A huge effort is being made by various conservation and government bodies with enormous donations by private individuals to save the population from total extinction. Notably a remnant population in the park was highly protected and slowly, over the next few decades the population made some recovery. In 2010 it was decided that the Serengeti area was being protected well enough to try and bolster the resident rhinos with new genetic stock. It just so happened that a private owner in South Africa had a breeding herd of Eastern black rhino that had been part of the attempt to safe guard the subspecies back in the 60’s, these animals had originated from Kenya. With strict controls by IUCN officials it was deemed these animals were of the right genetic stock to be reintroduced to the Serengeti.

The plan was to translocate 32 rhinos over the next few years and release them in a new site close enough to allow some overlap with the resident 30 or so rhino. Unfortunately the project has been affected by the recent escalation in rhino poaching and it is difficult to find how many rhino have been successfully translocated to date let alone the current Serengeti total population but you can bet it is still small. The IUCN red data list states Tanzania as having 88 Eastern Black Rhino in 2011.

If you are lucky enough to stumble across a rhino capture on Snapshot Serengeti you should definitely celebrate … and don’t forget to # it.

The Challenges of Field Work

 

img_0131

Hazard of the job; catching myself on camera-trap

 

If you have clicked through the seemingly endless captures on Snapshot Serengeti then you must have realized just how many cameras are snapping away out there in the Serengeti. Have you ever wondered who looks after those cameras?

Researchers sometimes go to extreme lengths to collect their data and not much deters them from their goal.

On a recent assignment working in Central African Republic I was tasked by our biologist to collect in an array of 40 camera-traps. The park was very large, the size of Wales and very remote, the nearest village was a 12 hours 4×4 drive away. It was also newly proclaimed and had little in the way of infrastructure like roads. Of course, Thierry wanted to survey the areas we didn’t yet know so obviously the cameras were nowhere near any of the smatterings of roads.

He presented me with a mobile phone resplendent with a mapping app which showed the camera trap locations overlaid with our rudimentary road network. I should really say temporal track system as these so called roads consisted of two tire tracks driven through the elephant grass and mud soon to grow over again in the coming wet season. The park consists of a mosaic of wooded savannah and tropical lowland rainforest so you are either struggling through 2 meter high elephant grass or deeply tangled riverine forest growth. Added to the physical challenges of working in the park was the fact of it harboring armed Sudanese cattle herders, poachers and Lord’s Resistance Army militia.

So equipped with the mobile phone, two trackers and 5 armed rangers off we went to collect the cameras. After three hours bumpy ride plagued with biting tsetse fly we got as close to the first camera as any road was going to take us. Using the phone to navigate I pointed us in the general direction praying that the battery would last. If it failed we would be completely lost with no landmarks. Two kilometers later we had narrowed down the camera location to about 20 meters and under the vigilant eye of the rangers myself and the two trackers began searching for the camera in the thick jungle tangle.

img_0028

Rangers caught on camera-trap whilst on patrol 

 

Once the camera was reclaimed it was bagged up and we set out for the walk to the next camera another kilometer or so away. The whole day was spent battling foliage and insects in the 40o c temperatures for a total of 8 cameras. We made camp for the night; the journey back to base was just too far with so many cameras still to collect. It took 4 days to collect half the array and it was with some relief that we trundled back into base camp having had no encounter with armed men.  A hot shower, something other than sardines to eat and the excitement of examining the camera-trap pictures was a just reward for all our foot work

The cameras were being used to assess what species were present in the park and as such were left up for short periods in small arrays. In the Serengeti however, there are 225 camera traps permanently running in an area of 1125 km2. Just think of the logistics involved with changing batteries, keeping vegetation trimmed back and changing SD cards. Our researchers work tirelessly to keep the project on its toes and over the next few months I will try to bring you their stories about the work we support from the comfort of our homes. We each have our part to play but together we are a team dedicated to furthering a scientific cause.

 

Why we do it

Congratulations, your time classifying images on Snapshot Serengeti has resulted in yet another scientific paper. Over 70,000 of you have contributed to analysing the millions of images produced by the 225 Snapshot Serengeti cameras over the last few years. Thanks to all your effort the cameras are still rolling, creating one of the longest running cameratrap studies going.  This data set is so important to scientists because of the size of the area it covers as well as the length of time it has been recording for. It allows them to ask many and varied questions about a naturally functioning healthy ecosystem and in today’s changing world it has never been so important to figure out what makes this planet tick.

The paper ‘The spatial distribution of African Savannah herbivores: species associations and habitat occupancy in a landscape context’ was published last year in Philosophical Transactions B. Visit here to read the article.

http://rstb.royalsocietypublishing.org/content/371/1703/20150314

The Snapshot Serengeti team argue that if we want to predict the impact of changes/ losses of large mammals in the future we need to have a quantitative understanding of a currently functioning ecosystem. It just so happens that the Snapshot data set is perfect for this. The Serengeti National Park is representative of the grass dominated Savannahs of East Africa which are home to the world’s greatest diversity of ungulate (hoofed animals) grazers.

The team present a neat graphic that shows how the various elements interact to affect herbivore habitat occupancy.

f1-large

Predators, herbivores, termites, fire, grasses and trees all play a role in determining where different herbivores choose to roam.

It seems that herbivore body size is also important to habitat selection. For example large herbivores survive by bulk grazing whereas small herbivores concentrate on grazing quality over quantity. Recently burned ground results in new vegetation growth. This growth is relatively high in nutrients compared with unburned patches and the same can be found on and around termite mounds. Small herbivores were found to occupy these areas but the sparse coverage does not favour large herbivores that must eat more volume.

The paper highlights the complex relationship between predators, herbivores, vegetation and disturbance and is well worth a read. Next time you are classifying images see if you agree. Do you see many herds of zebra or wildebeest on burnt areas or is it mostly Thompson’s gazelle? It’s another way to look at the images you classify.

Serengeti Science-ing!

50c214e68a607540b90408ad_2

We’re thrilled to announce another scientific paper from the Snapshot Serengeti team! This is one that has been a long time in the coming. It’s the revised third chapter of my dissertation, so you’ve heard me blog about these ideas time and time again. What’s especially exciting is that after several years of publishing methodological research about how camera traps and citizen science works, we’re finally turning your classifications into real ecological research, answering the fundamental questions about how species coexist.

“In the absence of a landscape of fear” has just been published in the Journal of Ecology and Evolution: you can check it out here. It’s an open access journal, which means you don’t need an academic library account to see the paper.

The short of the long is that we used camera traps to study how lions, hyenas, and cheetahs divided up the landscape in very fine scales. Our research before Snapshot Serengeti had indicated that lions exclude wild dogs from large areas of the landscape, so they lose out on access to the resources in these large areas and their populations suffer. Surprisingly, we found that cheetahs weren’t excluded from large areas nor did their numbers suffer in the same way.

We had suspected that this was because cheetahs were able to avoid lions on a moment-to-moment basis, but it was only with the camera trap data from Snapshot Serengeti that we’ve finally been able to test that!

Using Snapshot Serengeti data, we found that cheetahs actually show up more often in areas with more lions. This is probably because cameras reflect really desirable real estate — nice shady trees that attract prey and are near water sources. Instead of always avoiding those habitat hotspots because they have lots of lions (and lions are dangerous), cheetahs appear to just avoid those areas in the 12 hours immediately after a lion appears. So this means they’re able to get access to all the resources – shade, water, and prey – but still minimize the risk of actually running into a lion and getting chased or killed.

You can read more about the research here: http://onlinelibrary.wiley.com/doi/10.1002/ece3.2569/full

In other news, I wanted to let you all know that I’m transitioning into a new position through the American Association for the Advancement of Science (AAAS). AAAS administers a big fellowship every year that places scientists into government agencies. I’ll be joining the US Department of State in the Bureau of Oceans, Environment, and Science, to work on international environmental issues. It means I’ll be taking another step away from the academic research, but I hope to stay involved on Snapshot Serengeti in some way. The camera traps are still going strong – now maintained by Meredith and our new collaborators Tom and Michael, and there’s a whole bunch more exciting ecological research in the pipelines.

While we’re busy prepping the next NEXT PHASE of the Snapshot project (details coming soon!), we’ll be having guest posts from some of our invaluable undergraduate volunteers here in the University of Minnesota Lion Lab. They are writing a series on some of the lesser-known small animals which inhabit the Serengeti Park. Today, Lexi Vogler shares some information about the minuscule Klipspringer antelope: 

The Klipspringer, or Oreotragus oreotragus, is a small antelope that lives on cliffs and rock outcrops in mid-eastern and southern Africa. This mammal weighs up to 18kg and can reach a height of 60cm. It stands on the tips of its hooves, which are adapted for steep and rocky terrains (such as kopjes). In this type of terrain and with their climbing and jumping abilities, the klipspringer can stray away from predators and can obtain an adequate food supply. These animals stand on the ends of their hooves, so they can easily stand with all four hooves close together, easily adapting to the rocky landscape.

klip
https://en.wikipedia.org/wiki/Klipspringer

Klipspringers have a specially insulated coat that can withstand freezing or extremely hot temperatures. They are extremely adaptable animals, including within their diet. They will feed on the vegetation that grows in between rocks in a kopje, as well as on leaves, shoots, succulents, berries, fruits, seedpods, and green grass. Klipspringers can typically obtain most of their moisture need through their food. They will travel up to 0.5km away from their shelter to forage for food during the dry season.

Socially, the klipspringer typically stays with one mate, and they share a permanent home or territory. They care and guard their offspring together, but it is rare to see two klipspringers make contact with one another. Instead, klipspringers will communicate through scent, sound and sight.  They typically move and feed during the nighttime, and will lie in the shade in the afternoon when it starts to become hot.

Stay tuned to discover more interesting facts about these creatures and share in the comments if there are any animals you are particularly curious and would like to know more about! 

The Secret Life of Trees

This is another guest post by Drs. Tom Morrison and Michael Anderson  about the Snapshot Serengeti Special Edition and what their research hopes to uncover.

*****

img1

Seeing the forest for the trees

First, a big THANK YOU to everyone who has helped classified images at Snapshot Serengeti, both past and present. Without the continued help of this great online community, our research would come to a grinding halt! So thank you. A number of folks (and at least one giraffe) have asked about the new study currently up on Snapshot Serengeti, so here’s a fuller explanation of this work.

Photos from our newest Snapshot Serengeti Special Season come from a camera trap experiment in Serengeti involving friends and collaborators based at Wake Forest University (US), University of Georgia (US) and University of Glasgow (UK).

One of the exciting things about these new images is that they come from some of the more remote corners of the park, far beyond where past photos (Season 1-9) were (and continue to be) collected. So, keep an eye out for different species than past surveys. For instance in the north, you might see oribi, a small and elegant ungulate with a large dark scent gland below its eye. In the south, our cameras overlap the home ranges of some of the few black rhinoceros still living in the park, and we already know there are at least a few rhino images in our pile, like this:

img2

We set these cameras at a slightly higher height (1.5 meters in most cases), which allows us to see species from new wider angles. Admittedly, this new experimental design makes animal classifications a bit harder because we can often see far into the distance. Our advice is to simply do your best, but don’t sweat it too much if you can’t figure it out. Better to see the forest than the trees.

Back to the research…

Speaking of trees, this new study is trying to unravel the secret lives of trees. We monitor hundreds of individually marked trees around the ecosystem and revisit them each year to measure growth, survival, disease and few other things. You may have noticed little cages in some of the camera trap photos (see giraffe above). These are part of our experiment and enclose four small native tree seedlings which we transplanted to the plots after growing them in a nursery for 6 weeks. In fact we planted over 800 seedlings around the ecosystem to study the relative importance of herbivory, fire and rainfall on seedling growth and survival. So, we need camera traps to monitor things when we’re not there.

For example, check out the following sequence captured on one of our game cameras in southern Serengeti involving one of our marked trees:

img3

What’s amazing about this is that not only does an elephant kill an adult tree, he does it under 60 seconds. This tree is an Acacia tortilis, or the “umbrella acacia,” named for its characteristic flat top. Umbrella acacias are one of the most common trees in Serengeti and one of our main study species. Images like these help inform our study of trees, telling us how they died, or at least how many large herbivores were in the area to potentially kill and eat them. But this begs the question: if a tree falls in the Serengeti, will anyone hear it? At least we know that there’s a small chance that one of our cameras might see it.

Just where are we, anyway?

If you’ve been clicking through our new “extended survey” season, you might have noticed some new critters — particularly lots of cattle, sheep, goats, even donkeys! This is because the extended survey reaches much farther north, west, south, and east than the long-term camera study area. You can see all of Tom’s and Michael’s cameras on the map below in the black and gray circles. Two sites are at the edge of the park, where we might expect to see  the occasional pastoralist passing by  (even if they’re not supposed to) — and one site is *all* the way down deep in the Ngorongoro Conservation Area, where pastoralists live permanently.  If you see any livestock in the images, go ahead and mark them as “cattle” — we’ll be able to figure it out from there!

FIG